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Abstract

Upper-stem tree measurements are frequently made outside bark with the
only bark thickness measurements being made at breast height. The current study
develops equations and coefficients for estimating the bark thickness in both the
upper stem and at the stumps based upon the bark thickness at breast height, the
size of the tree (DBH and total height), and the height to the measurement in
quesnon.

Previously-published bark taper models were examined; the model adapted
here is a previously-published hyperbolic ratio, with an adjustment. The
adjustment is made to account for the more rapid taper on trees with thicker batk,

The data used for fitting and testing the taper models consisted of
measurements on over 3,000 conifer trees measured by members of the Northern
California Forest Yield Cooperative and the USDA Forest Service. The data set
was split into two halves, one half for fitting and the other half for testing.

The adjusted hyperbolic model outperformed the other upper stem bark
taper modgels for all species except red fir, where it gave similar results as one of the
hyperbolic ratios and one of the segmented-polynormal medels. For the bark taper
at the stumps, the recommended power function outperformed the other models for
all six conifer species examined.

While we are usually interested in the tree diameter inside bark for estimating tree volume,
1t 1s usually outside-bark diameters that are observed, often using an optical device to estimate tree
diameters at various heights above the ground. This leaves one with the problem of estimating the
bark thickness for each outside-bark diameter measured along the stem. The objective here is to
examine alternative models for expressing the relative taper of the bark so that bark thickness
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observed at breast height can be used to estimate the bark thickness at various points along the

Stern.

The current study is a cooperative effort between the University of California, the USDA
Forest Service Region 5 and the Pacific Southwest Research Stauon. the California Department of
Forestry and Fire Protection, Michigan-Califormia Lumber Company, and Crane Mills. The
conifer species considered include the following:

Code Species

PP ponderosa pine (Pinus ponderosa Dougl. ex Laws.)

SP sugar pine (P. lambertiana Dougl.)

DF Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco)

WF white fir (Abies concolor (Gord. & Glend.) Lindl. ex Hildebr.)
RF red fir (A. magnifica A. Mur.)

IC incense-cedar (Calocedrus decurrens (Tor.) Florin)

For many of the same conifer species considered here, Khan, Bell, and Berg (1977),
Richie and Hann (1984), Dolph (1984, 1989) and Larsen and Hann (1985) developed expressions
for inside-bark diameter as a function of diameter outside bark. These include linear and nonlinear
regressions and ratio models. However, as noted by Assman (1970, p.73), within the same
species bark thickness varies "according to site, age, and racial characteristics of the tree”. Thus,
improvements in the predictons can be expected with more "local” information on the bark
thickness of each wee. Also, the "true” relationship between inside- and cutside-bark diameters is
the subject of the current paper.

When measuring standing trees with an optical dendrometer, the usual process is to
measure the double bark thickness at breast height (DBTBH) by either cutting into the stem with an
axe or by using a bark gauge at 4.5 feet above the ground. Because such measurements are made
with some error and since bark thickness varies around the stem. typically two such measurements
are taken at right angles to each other and added to esumate the DBTBH, stif! with some error.
Bark taper models can then be used to express the reducton in bark thickness as one goes from
breast height to the tip or to the stump of the tree. Thus, the measurement of bark thickness at
breast height "localizes” the predictions of bark thickness at other points. Below breast height one
of two relationships are evident. Undamaged trees have bark thickness increasing from breast
height down to the stump while trees that show damage due to fire and/or logging may have
thinner bark at the samp than at breast height.
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MODELS CONSIDERED

In this study, available bark thickness models were evaluated for their ability to predict the
bark taper from felled tree data collected in five different studies of stem taper in California conifers
(see "Data” below). The upper stem (above breast height) bark taper models evaluated are
presented in Tables 1 and 2 while the lower stem (below breast height) models are considered in a
later section. Table 1 includes basic hyperbelic models and Table 2 includes segmented
polynomial models. Each equation is formulated to predict the relative bark thickness at a given
height and the vanables used include the following:

DBH  Diameter at breast height (4.5 feet)
DBT Double bark thickness at height h
DBTBH Double bark thickness at breast height
DIB Diameter inside bark at height h
DOB Diameter outside bark at height h
h Height to measurement
THT  Total height of tree
We assume that the bark thickness at breast height can be measured and the variable predicted is the

reladve bark thickness, DIB)?]IE;H' That is, Y] is the estumated relative bark thickness, %, for

bark taper model i 1 =1, 2, - - -, 10).
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Hyperbolic ratios (upper stem)

In his STX computer program for reducing measurements from optical dendrometers to
tree diameter and volume estimates, Grosenbangh (1974) provides three bark taper optons. These
ratios, illustrated in Figure 1, include a constant ratio. option 1, and two hyperbolic ratos, options
2 and 32, The STX bark options, denoted as G1, G2, and G3, respectively, are as follows:

DOB - DBT _ DBH - DBTBH

(G1)

DOB DBH
3 @4@}#
(G2) DOB \ DBH /|, .DOB
DBH
DOB-]ﬁ=[DBH-DBTBH} 9
(G3) DOB DBH .0 DOB
DBH

Conifer relative bark thickness decreases faster than the diameter ratio as illustrated in Figure 2 by
the sample white fir data set. This causes a distinct lack of fit for bark options 1 and 3 which
predict the bark ratio to decrease proportional to the diameter ratio and slower than the diameter
ratio, respectively. Bark option 2 has the general form of the bark taper relationship, but, as
llustrated in Figure 2, option 2 appears to underestimate the bark thickness in the top half of the
tree and overestimate in the bottom half. Nonetheless, since it has Jess bias than either option 1 or
option 3, option 2 has been used in previous stem taper studies (Wensel 1977 and Wensel and
Krumland 1983). Thus, while Grosenbaugh's options 1 and 3 are dropped from further
consideration, option 2 will be the first bark medel considered here (see Table 1).

Models 2 through 5 (Table 1) are variants on this basic hyperbola (Brickell, 1970)
restricted so that Y =1 at breast height and Y = 0 at the tip where DOB = 0. Model 2 is similar to
model 1 but the value of the coefficient is estimated from the data. Models 3 through 5 are
variations of model 2 with different numbers of coefficients fitted to the various components.

Models 1 through 5 all showed differential bias associated with the bark thickness at breast
height, even for the 4 parameter model 3 for which the residuals of upper stem bark thickness

2 A fourth option is also provided for users 10 supply their own bark model.
3

Grosenbaugh (1974) denotes the 1wo coefficients 1 and 2, by QUAN and DENO, respectively. However, if DBT
is to equal DBTBH when DOB equals DBH, QUAN must equal DENO - 1 leaving option 2 with only one
effective coefficient.
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predictions consistently showed a negative correlation with the bark thickness at breast height. To
alleviate this bias a function of DBTBH was added to model 3 forming bark model 6 (Table 1).
The term is constructed so that the relative bark thickness is still predicted as one at breast height,
but the bark thickness near the tp goes to the inverse of the value of the DBTBH in inches.

Segmented polynomials (upper stem)

Segmented polynomials were first used for tree taper by Max and Burkhart (1976) who
cited earlier work by Fuller {1969), Gallant and Fuller (1973), and Gallant (1974). Two or more
polynomials are fitted to sections of the range and grafted together at one or more join points. At
gach join point the model is required to be continuous, and the first derivative must be continuous.
Further, Max and Burkhart use the polynomial presented for wee taper by Kozak, Monro, and
Smith (1969). and they constrain the model to predict the value 0 at the tip of the tee (relative
heightequal to 1) .

Maguire and Hann (1990) start with this basic definition and impose the further
requirement that the model reflect the tree-to-tree variability in the height to diameter ratio. Maguire
and Hann's model is represented in Table 2 by models 74 and 8, for relative height and relative
diameter, respectively. They applied their model to Douglas-fir, and their model estimates will be
examined here using both their parameter estimates and estimates from the data at hand.

Models 9 and 10 are two- and three-segmented polynomials, respectively, on relative
diameter with the formulation directly from the work of Max and Burkhart (1976).

Stump models

A common approach to estimating bark thickness below breast height is to use one of the
models for the upper stem. An exception is a stump model developed by Maguire and Hann
(1990) for predicting bark thickness between breast height and a one foot stump. However, the
model by Maguire and Hann was not included in this analysis because it requires height to crown
base as one of the predictor variables.

Here we examine four models for predicting bark thickness at the stump. As with the
upper stem models, we assume that the bark thickness at breast height can be measured and the

. : . : . T .
vanable predicted 18 the relative bark thickness, Y = Dg'ﬁ The four stump models considered

are given in Table 3. They include a simple proportional model (Grosenbaugh’s option 1), a

4 Note that this is the only model considered that uses relative height instead of relative diameter.
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hyperbolic model (Grosenbaugh's option 2), a simple linear model, and a power model that
reflects the bark thickness at breast height. All models are constrained to predict the relative bark
thickness to be equal to 1 when the relative diameter is equal to 1.

DATA

The bark taper data used here are taken from 5 separate sources where bark measurements
along the tree stem were made as part of separate studies on tree taper or utilization. Each of these
data sources in described briefly here and the number of trees in each data set is shown by species
in Table 4.

The "Coop" bark data set comes from a stem analysis data set developed by members of the
Northern Califorrua Forest Yield Cooperative. Formed in 1978, this cooperative research group
links the research staff at the University of California with various private forestry companies and
public agencies to produce growth prediction models for California conifers. A previous study
(Biging 1984) used the inside-bark wee diameters to develop stemn taper equations for California
conifers. Measurements on these same trees were also used for initial growth models for
CACTQS, the California Conifer Timber Qutput Simulator (Wensel , Meerschaert and Biging,
1987). The data came from industry forestlands in the Sierra Nevadas, Southern Cascades, the
Shasta-Trinity, and the Mendocino region.

The "Dolph" data set comes from a study of conifer trees in California’s Sierra Nevadas
and was collected for the purpose of developing a California PROGNOSIS vanant (Dolph 1984
and 1989). The "Fir Study" data set was contributed to this study by Bill Oliver (USES, Redding)
and was the basis for his growth studies on thinned true fir stands. "Region 6" refers to U.S.
Forest Service data from southern Oregon . These data were collected from sample trees in

southern Oregon to adjust the regional gross volume inventory estimates for local utilization.

The "Mill Study" data come from a series of utilization studies conducted in California by
the USDA Forest Service Pacific Northwest Forest Experiment Station. Sample trees were felled
and scaled in the field, scaled again in the mill before being sent through the mill for conversion.

Data screening / ediring

The data were received from the various contributors and cooperators and stored in a
common data base. The data were then retrieved from this data base using a screening process that
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eliminated trees and/or observations that were obviously in error or would result from forked,
broken, or grossly malformed trees. Since field data sheets for most of the data were not readily
available, there were no further changes made to the edited data.

The mean, minimum, and maximum tree DBH and total height by species are given in
Table 5.

RESULTS and DISCUSSION

The SAS nonlinear fitting procedure, NLIN, was used with the Marquardt option (SAS
Institute, 1985). Each of the 14 models was fitted to each of the six major conifer species
considered. Tables 6 and 7 give the coefficients for the models listed in Tables 1 and 2 for the
hyperbolic and segmented polynomial models, respectively, Tables 8 and 9 show the residual
sums of squares by species, model, and data set.

Hyperbolic models (upper stem)

For the single parameter models, a distinet improvement was made by fitting the parameter
by to the data rather than using the value by = 2 as inmodel 1. A substantial improvement in the
quality of the fit was achieved by using the 4-parameter model, model 3. Sums of squares
dropped about 21% overall, and a better fit of relative bark thickness was achieved both at the top
and the bottom of the ree. The relationship between the single and 4-parameter models 1s
illustrated in Figures 3 and 4 for ponderosa pine and Douglas-fir, respectively. These figures
show that the general form of the models 2 and 3 are stmilar for ponderosa pine but differ

considerably for Douglas-fir. The differences in the residual patterns are illustrated in Figures 3
through 83.

Figures 5 and 6 for ponderosa pine and Douglas-fir, respectively, show a more balanced
residual pattern for the 4-parameter model, model 3. The effect is even more dramatic for Douglas-
fir. Model 2 residuals (Figure 7) indicate considerable bias in the estimates in the tips of the trees
which appears to be absent in the model 3 residuals (Figure 8). Overestimates of bark in the tips of
the trees will have little effect on the estimates of volume in these sections. Its significance is more

3 Searle (1988) points out that the single or parallel lines with slope -1 in residual plots "occur no matter what
model is fitted to y, and correspondingly no matter how ¥ is calculated. be it based on linear or nonlinear
estimates.” Thus the occurrence of such lines here is 10 be expected and should be of no concern to the reader.

Bark taper models for Califormnia conifers -7-



important in the esimation of merchantable height of the tree, i.¢., the height at which the tree
‘diameter inside bark 1s equal to the merchantable limit (say, 4 or 6 inches).

The 4-parameter model fits better than the one-parameter model. However, it may be over-

specified. The four coefficients were not all significant for any of the 6 species. This suggests that
we should be able to define the relationship with fewer coefficients. Model 4 with b3 and by

dropped and model 5 with only b3 dropped showed only nominal increases in the residual sums of

syuares for most species, and m some cases, there were slight decreases in the mean square error
(MSE). In summary, for white fir, incense-cedar, and ponderosa pine, there was little difference
between the sums of squares for models 3, 4, and 5. The other three species showed considerable
model improvement from mode!l 5 to 3.

As evident in Figures 5 and 6, even the 4-parameter model does not do an adequate job of
producing zero average residuals in the top of the tree. This patiern was evident in all 6 species.
As a result, the hyperbolic model was "adjusted” with a second additive term (see model 6 in Table
1) that was a function of the bark thickness at breast height. Figure 9 shows the form of model 6
for bark thickness 0.5, 1, 2, and 4 inches using coefficients fitted for Douglas-fir. The location of
the minimum point for each value of DBTBH is indicated by the line crossing the prediction lines®,
The relationship between these minimum values and DBTBH is;

N S
Rmin =33 DBTBH

where Rpin is the calculated minimum relative diameter for each species as a function of DBTBH
and a is a species-specific coefficient. The Rmin values calculated for the six species appear in

Table 10.
This gives a conditional function Yg as follows

Y6=1 vg : RD > Rmin

DOB

where RD = relanve diameter , [DBH]; Rmin = diameter ratio at which the minimum bark ratio

occurs; and fmin = minimum bark ratio (i.e., Y§ = fmin for RD = Rin).

Model 6 with two coefficients for the hyperbola and one coefficient for the "adjustment”
reduced the total sum of squares an average of 8% over all species. A comparison of Figures 11

& The minimum poinis were found by calculating the first derivative of model 6 for each species, setting the
derivative to zero, and solving for the range of DBTBH’s.

Bark taper models for California conifers -8-



and 12 with Figures 5 and 6, respectively, shows that ponderosa pine with its thicker bark
produces more of an "adjustment” in the tops of the trees than does Douglas-fir. However, its real
benefit comes from the improvement in the fit in the tops of the trees, as lustrated in Figures 11
and 12, since even the 4-parameter hyperbolic model failed to provide an unbiased model for the
top of the mee.

Segmented polynomials (upper stem)

Maguire and Hann (1990) base their 2-sectioned model on relative height. Their model for
Douglas-fir, model 7, is shown in Figure 13 with both their coefficients and with coefficients
computed from our data. There is little difference between the two models but both show an
uregular pattern of bark change as one progresses up the tree.

In an artempt 10 improve this patten, we used relative diameter instead of relative height to
produce model 8. This change produced a 19% drop in the residual sums of squares over all
species with the change being similar for all species. This causes us to reject model 7 in favor of
model &.

Fitting the join point, k, along with the other coefficients produced nearly idenucal residual
sumns of squares for all species except white and red firs and even here the improvement in the
residual sums of squares was less than 1%. As a result, the value k = 0.3 proposed for stem taper
by Maguire and Hann (1990) was used in model & for all species.

To evaluate the effect of using Maguire and Hann's process for using the height/diameter
ratio over a simple 2-sectioned segmented polynorual, we can compare models 8 and 9. Here we
see that this step produces no real improvement in the residual sums of squares (Table 9) for
ponderosa pine, sugar ping, Douglas-fir, and white fir, but there is a small (though insignificant)
improvement for both red fir and incense-cedar. The difference between models 8 and 9 was the
greatest for red fir and 1s Ulustrated in Figure 14.

Adding a third section to the segmented polynomial model has the potental of improving
the fit in the top of the tree. Figures 15 and 16 show the differences between models 9 and 10 for
ponderosa pine and Douglas-fir, respectively. There is some slight improvement in the overall
residual sums of squares for some species, but, as shown in the residual plots in Figures 17 and
18, any real advantage of using three sections comes from the improvement in the residual pattern
in the tips of the trees.

Bark taper models for California conifers -9-



Best upper stem model

Among the segmented polynomial models, the 3-secticned model, model 10, appears to
have an advantage of small residual sums of squares for all species except red fir and incense-
cedar and a better residual pattern for all species. Comparing the best hyperbolic model, model 6,
with the best segmented polynomial model, model 10, shows that model 6 has the smallest overall
residual sums of squares and mean squared error. While, as shown for ponderosa pine and
Douglas-fir in Figures 19 and 20, the lines are somewhat similar. In additon to having the
smallest residual sums of squares, model 6 only requires that 3 coefficients be computed
{compared to 6 coefficients for model 10).

Stump model

Table 12 compares the residual sum of squares (RSS) of the four stump models tested.
The model S4 consistently had a much smaller RSS compared to the other three models. The
general hyperbolic model, 82, did quite poorly. Residuals from models S1, S2, and S3 all show
significant correlation with DBTBH. The models S1, §2, and S3 ail showed significant
correlation with DBTBH or DBH. The addition of the exponent as a function of DBTBH in model
S4 eliminated this correlation and reduced the overall correlation of predicted with residual relative
bark ratios.

This extensive look at conifer bark taper has resulted in the recommendation of two new
models for bark taper. For upper stems the adjusted hyperbolic model, Y, is recommended and

for stump bark taper the power model S4 is recommended. Both represent distinct improvements
in the way bark taper estimates have been handled in previous studies.
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Table 1.

No. 1

No. 2

No. 3

No. 4

No. 5

No. 6

Hyperbolic bark taper equations evaluated, where Y is the

. . DBT . :
predicted bark ratio DBTBHE- Double bark thickness is then

predicted by multiplying Y by DBTBH.

Hyperbolic ratic (Grosenbaugh 1974, option 2)
Y, = [DOB) 1
DBH' |, . (DOB
DBH
No. 1 with coefficient fitted to data (Brickell 1970, option 2)
Yo = [DQB‘ by -1
2= ppn! b, - [DOB
*"\DBH

Brickell option 3
_ (DOB
Y3 (DBH)

by -1 bs

Brickell option 4
Ya= DOB b b-1
¢ [DBH (bj ] (DOB]
* \DBH
Variant between Brickell's options 3 and 4

Ys = [ROBJ (b b - 1 ]de

DBH 5 - [D_Q_B_
DBH
Adjusted hyperbolic ratio
(@)bﬁ -1
Y = [DOB b2 -1 - |\DBH
DBH/ |, @]m DBTBH
* ‘DBH

for DOB > Dmin and Yg = Fmin otherwise where Dmin
and Fmin denote the coordinates of the minimum of th
above function.
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Table 2. Segmented polynomial bark taper equatons evaluated,
where Y is the predicted bark ratio % Double bark
thickness is then predicted by multiplying Y by DBTBH.

No. 7  Localized two-segmented polynomial on relative height
(Maguire and Hann 1990)
LetX = HI

THT

_ THT THT {2
al_bl+b2{DBH}+b3(DBH
then
Ys=1+2z1+aj22+a323
for

XD (k-X)}_ }
Zl_I{k-1 _]+ k-1 1

_ (x-1)[ k(k—X)}_ }
zz_xulk_l X o+ = X
xR XD M} 2}
23=X +1[ o {2}( k+ = - X

withk =0.3 and I = 1 for X 2 k and zero otherwise. The
coefficients ap, by, by and by to be estimated.

No. 8§ Localized two-segmented polynomial on relative diameter
Model as above except X =1 - DB

No. 9  Two-segmented polynomial on relative diameter (Max and
Burkhart 1976).

Yo=b) (X-1)+by (X2-1)+b3(ag - X)2 1y

where X =] - %%—]% , I =1 for X £aj (zero otherwise),

and aj, by, by and b3 are coefficients to be estmated.

No. 10 Three-segmented polynomial on relative diameter (Max and
Burkhart 1976).
Y10=Y9 + b4 (a2-X)2 1y
where Yg is defined above , Ip =1 for X £ap (zero

otherwise) and aj and by are additional coefficients.
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Table 3. Models considered for predicting the relative bark thickness at stump, Y,
where DOB is the diameter outside bark at the stump and DBHOB is the
stump.

Grosenbaugh's (1974) bark option 1

Grosenbaugh's (1974) bark option 25

DOB 1
Ys3 = (DBH] DOB \ (82)
2- (DBH/!}

A simple linear mode!:

DOB 1]

Yo =1+¢; [‘B"B*ﬁ - (S3)

where ¢ is a coefficient .

'The above linear model expanded by a power computed from the bark thickness at

breast height:
DOB )(c2 +c3 DBTBH)

Yes=1+04 [ﬁgﬁ -1 (543

where ¢y, €2, and ¢3 are coefficients estimated from the data.

3 See footnote number 3
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Table 4: Number of trees by Species and Datasets:

SPECIES & NQ. OF
DATASET TREES
Ponderosa Ping
COOP 187
DOLPH 141
MILL 177
ALL 515
Sugar Pine
COOP 65
DOLPH 62
MILL 54
ALL 181
Douglas-Fir
COOP 186
DOLPH 44
ALL 230
White Fir
COOP 352
DOLPH 313
MILL 161
FIR STUDY 76
AlL 802
Red Fir
COOP 356
MILL 148
FIR STUDY 562
REGION 6 273
ALL 1019
incense Cedar
COOoP 81
DOLPH i8¢
MILL 54
ALL 324
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Table 5. Number of trees. mean. minimum. and maximum diameter at breast height and total

height used to fi1 bark taper models by species.

Diameter Height
Number
SPECIES of trees | Mean Min  Max | Mean Min  Max
Ponderosa pine 515|211 55 602 |100.7 18.0 2020
Sugar pine 181 |24.1 35 625 | 948 9.0 2040
Douglas-fir 230 | 154 5.5 31.2 | 86.7 255 15056
White fir 902 [17.6 5.5 629 | 80.2 186 204.0
Red fir 1019 [ 20.9 3.0 574 | 85.6 107 1950
Incense-cedar 324 138 34 508 | 495 74 1550

Table 6. Coefficients calculated for each hyperbola model.

MODEL
SPECIES # bj b~ [k} by b3

Ponderosa Pine 2 2 05347~

3 172435 1.00877° 029665 .649123°

4 095474 1.31835

5 349635  1.09045 .388315

(5} 2 85323 6 18840 .150480
Sugar Pine 2 3.35449

3 -.021007* §.01705" 031161° 1.10561"

4 219662 1.46440

5 879999 60.7655"7 43.2687"

8 4.93961 443 8§27 098117
Douglas-Fir 2 1.65893

3 721122 8.01472° 11.3072° 3 89232

4 .1936986 1.27256

5 614854 1.00847 150581

6 2.83504 13.6250 .055268
White Fir 2 1 79431

3 1869817 .989607" -.062291" .5728%8"

4 077587 1 28022

5 250571 1 14080 575405

8 2.67181 5.82073 080351
Red Fir 2 3. 48315

3 256430 944620 - 450785 313750

4 177066 1.48455

5 641516 42 8754”7 31.7965"

5 5.16610 52.944¢2 .095993
Incense Cedar 2 2 434186

3 2000627 9961297 - 012814  715154°

4 381861 1.46319

5 751977  1.00961 105277

6 3.80876 9.3498¢ 060086
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Table 7. Coefficients calculated for each segmented polynomial model.

SPECIES MODEL # a & a a b by by by

Fonderosa Pine 7 -2.B3552 - 205578 17528 5.83120%

8 -2 68502  -.133710 011663  ¢.50827

9 352847 173569° - 649857  4.10060

10 74750 921401 49.8355° .27.2028" 7.86930 27.5578"
Sugar Pine 7 .2.68484 -.185314 015244  5.56148

8 -2.39568 - 080485 006466 3 75758

9 235572 -.164897 - 501945 578076

10 039684 .938852 73 5727 -32 4965 115.620° 39 5929°
Oouglas-Fir 7 -4 34707 249985  -.012264 5 48281

a -3 84069 085076 - 002958 5 56035

g 215982 -.155540  -.335021 9.47537

10 185933 548954 38.3031 -20.5246 10.8073 204324
White Fir 7 -2.11532  -.077110 010508 5 30685

8 .2.81758 -.143934 091142 485128

9 386240 387050 -.757016 4 13236

10 226295 923448 52 2488  -28.4104 521484 28.7965
Red Fir 7 -2 07456  -.140579 008704 4.23880

8 .1.73861  -.220068 615331 3.34268

9 206937 -.298995 -.433534 6.05364

i0 124518 041632 55.9460  -3D 0884 11.7623  30.0820
Incense Cedar 7 -3 42176 -.163537 024326  6.03113

8 -1.96023  -.293174 027806 3.47811

g 242376 .451134 ..235204 5.24302

10 214742 068906 87.0817 -45.3019 556182  45.2831
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Table 8. Residual Sum of Squares (RSS) for the different Bark Models by Species and

Datasets:

HYPERBOLIC MODELS

SPECIES & NO.OF Model# Model# Model# Model# Model# Model#

DATASET OBS. 1 2 3 4 5 &
Ponderosa Fine

COOP 1232 42.40 42.10 33.30 33.80 33.30 29.70
DOLPH 8386 8.47 8.56 5.54 5.40 5.54 5.05
MILL 673 17.37 17.52 13.91 14.08 13.92 13.07
ALL 2741 68.30 68.22 52.75 53,27 52,73 47.86
Sugar Pine

CCOoP 424 18.41 14.81 12.53 12.49 13.27 11.02
DOLPH 351 2.53 412 2.58 2.73 4.59 3.00
MILL 242 9.89 8.55 7.55 7.85 8.27 6.40
ALL 1017 30.83 27.49 22.64 22.87 26.13 20.85
Douglas-Fir

COOP 1164 27.30 2650 18.90 20.70 18.80 17.60
DOLPH 237 3.32 2.65 1.47 1.43 1.48 1.41
ALL 1401 30.70 2914 20.37 22.18 20.41 19.04
White Fir

cooP 2048 64.10 66.20 49.60 50,29 49.60 45.40
DOLPH 1888 24.90 21.90 15.50 15,22 1550 15.40
MILL 514 11.68 11.34 9.87 9.88 .87 10.28
FIR STUDY 441 6.70 6.05 4.12 4.2 4.11 3.88
ALL 4891 107.40 105,48 79.09 79.51 79.08 74.91
Red Fir

CoOP 178 553 464 3.34 3.3 4.07 3.23
MILL 452 12.80 9.90 9.10 9.20 9.70 9.15
FIR STUDY 3607 68.80 64.00 44.00 46.80 B0.60 42.50
REGION & 1367 43.80 31.70 29.40 30.40 29.60 30.51
ALL 5604 130.60 110.35 85.84 90.03 104.04 85.38
Incense Cedar

CcooP 355 6.85 6.14 5.66 5.76 5.686 5.26
DOLPH 844 7.89 8.48 6.03 6.16 6.03 4.91
MILL 114 6.78 5.79 5.41 5.6¢ 5.42 5.72
ALL 1313 21.32 20.41 17.10 17.61 17.11 15.89

Bark taper models for California conifers  -19-




Table 9. Residual Sum of Squares (RSS) for the different Bark Models by Species and
Datasets.

SEGMENTED POLYNOMIAL MODELS

SPECIES & NO. OF Model# Modelf Model# Modelg
DATASET 0B8S. 7 8 9 10
Ponderosa Pine
COOP 1232 38.30 34.70 34.70 33.10
DOLPH 836 11.44 5.61 5.60 5.63
MILL 673 17.78 14.10 14.31 13.88
ALL 2741 67.50 54.40 54.63 52.81
Sugar Pine
COOP 424 14.46 12.80 12.77 11.67
DOLPH 351 6.92 2.88 2.93 3.73
MILL 242 7.48 7.11 7.14 7.07
ALL 1017 28.87 22.88 22.84 22.46
Douglas-Fir
COQOP 1164 19.40 18.4 19.3 19.1
DOLPH 237 3.36 1.39 1.43 1.38
ALL 1401 2275 20.75 20.76 20.48
White Fir
COOP 2048 58.2 52.4 52.0 498
DOLPH 1988 27.3 i16.2 15.9 15.6
MILL 514 11.55 g.37 9.89 S 83
FIR STUDY 441 4.66 4.19 4.20 412
ALL 4891 102.70 82.07 81.99 79.29
Red Fir
COOP 178 3.98 3.57 3.49 3.30
MILL 452 9.72 g.10 g.2 9.1
FIR STUDY 3807 48.99 44.60 456 44 .5
REGION 6 1367 37.07 28.28 29.3 29.2
ALL 5604 99.78 85.56 87.59 86.07
fncense Cedar
COOP 355 65.69 583 5.70 5.64
DOLPH 844 12.83 5.75 6.10 6.06
MILL 114 517 4.94 5.33 5.35
ALL 1313 26.10 16.51 17.13 17.05
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Table 10. Coefficient values for calculation of Rmin for California conifers.

SPECIES a

Ponderosa pine 9.241
Sugar pine g.241
Douglas-fir 15.078
White fir 10.098
Red fir 13.388
Incense cedar 15.883

Table 11. Coefficients calculated for stump bark models.

SPECIES Model # b1 b2 b3
Ponderosa Pine 83 1.99610

S4 1.73416  0.0" 0.475413
Sugar Pine S3 0.813498

S4 1.0* 0.0* 0.678624
Douglas-Fir S3 1.95171

S4 1.0* 0.0" 0.397823
White Fir S3 1.18022

S4 1.0" 0.0" 0.555289
Red Fir 53 1.234197

S4 0.880132 0.260076 0.225097
Incense Cedar S3 2.23461

54 1.87591 (0.559340 0.171258

" fixed

Table 12. Residual sum of squares (RSS) for the different stump bark models by
species.

No. of Model# Model# Model# Model#

SPECIES Obs. S1 S2 S3 S4

Ponderosa Pine 462 124.37 11486 107.18 85.18
Sugar Pine 128 13.60 28.25 13.80 10.83
Douglas-Fir 189 32.90 32.21 29.06 21.92
White Fir 856 83.48 180.26 82.36  70.81
Red Fir 1002 68.33 223.06 65.41 54.99
Incense Cedar 300 84.63 74.38 48.69 46.05

Bark taper models for California conifers -21-




Figure 1. Illustraticn of 3 bark opticns (Gl, G2, and G3) provided by STX
{Grosenbaugh 1874}
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Figure 2. Bark ratio for measurements on 352 white fir trees with
Grosenbaugh’s bark option 2 for reference.
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Figure 3. Single parameter (¥2) vs. 4 parameter hyperbola (Y3) for
Ponderosa pine
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Figure 4. Single parameter (Y2) vs. 4 parameter hyperbola (¥3) for
Douglag-fir

1

7

DBT/DBTBH

0 DCB/DBE 1

Figure 5. Residual (observed-predicted} plots for 4-parameter hyperbola
(Y3) bark ratio for Douglas-fir.
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Figure 6. Residual (observed-predicted} plots for 4-parameter hyperbocla
(Y3) bark ratio for Ponderosa Pine,.
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Figure 7. Residual (observed-predicted) plots for single-parameter hyperbola
(Y2) bark ratios for Douglas-fir.
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Figure 8. Residual (observed-predicted) plots for single-parameter hyperbola
(Y2) bark ratio for Peonderosa Pine.
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Figure 9. Adjusted hyperbola (Y6) for Douglas-fir (DBTBE = .5, 1, 2,
and 4 inches).
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Figure 10. aAdjusted hyperbela (Y6) vs. 4-parameter hyperbola (Y3) for
Douglas-fir (DBTBH = 2.3 inches).
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Figure 11. Residual (cbserved-predicted) plots for adjusted hyperbola
(Y6) bark ratios for Ponderosa pine.
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Figure 12. Residual {observed-predicted) plots for adjusted hyperbola
(Y6) bark ratios for Douglas-fir.
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Figure 13, Illustration of the relative height model using Maguire and
Eann‘s coefficients (¥Y7m) and using new ccefficients (¥7)
for Douglas-fir.
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Flgure 14. Maguire and Hann’'s model (Y8) on relative diameter vs.
two-segmented polynomial (Y¥9) for Red Fir.
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Figure 15. Two-segmented polynomial (¥9) on relative diameter vs.
three-gsegmented polynomial (Y10) for Pondercsa pine.
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Figure 16. Two-segmented polynomial (Y9) on relative diameter vs.
three-segmented polynomial (Y10) for Douglas-fir.
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Figure 17. Regidual wvs. predicted bark ratios 2-segmented polynomial
(¥9) for Douglas-fir,
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Figure 18. Residual vs. predicted bark ratics 3-segmented polynomial
(Y10) for Douglas-fir.
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¥igure 19. Adjusted hyperbola {(Y6) vs. three-segmented polyromial (¥1i0) for
ponderosa pine (DBTBH = 2.3 inches).
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Figure 20. Adjusted hyperbola (Y6) vs. three-segmented polynomial (Y1l0) for
Douglas-fir (DBTBE = 2.3 inches).
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Figure 81. Residuals vs. predicted bark ratio for pondercosa pine using stump
model 1.

Residuals

1 Predicted 2.7

Figure $2. Residuals vs, predicted bark ratio for ponderoga pine using stump
model 2,
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Figure S3. Residuals vs. predicted bark ratic for ponderosa pine using stump

model 3,
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Figure S4. Residuals vs. predicted bark ratio for ponderosa pine using stump

model 4.
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